PolSAR Image Feature Extraction via Co-Regularized Graph Embedding
نویسندگان
چکیده
منابع مشابه
PolSAR image segmentation - Advanced statistical modelling versus simple feature extraction
In recent years, we have presented many algorithms for polarimetric SAR image segmentation that show the continually improving developments in the field. However, there are two distinct and divergent approaches one using highly flexible textured models for the covariance matrix statistics (such as the Wishart, K-Wishart, and U-distribution), and the other using simple features extracted from su...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملVariational Graph Embedding for Globally and Locally Consistent Feature Extraction
Existing feature extraction methods explore either global statistical or local geometric information underlying the data. In this paper, we propose a general framework to learn features that account for both types of information based on variational optimization of nonparametric learning criteria. Using mutual information and Bayes error rate as example criteria, we show that high-quality featu...
متن کاملOrdinal regularized manifold feature extraction for image ranking
This paper proposes a novel feature extraction algorithm specifically designed for learning to rank in image ranking. Different from the previous works, the proposed method not only targets at preserving the local manifold structure of data, but also keeps the ordinal information among different data blocks in the low-dimensional subspace, where a ranking model can be learned effectively and ef...
متن کاملCourse Concept Extraction in MOOCs via Embedding-Based Graph Propagation
Massive Open Online Courses (MOOCs), offering a new way to study online, are revolutionizing education. One challenging issue in MOOCs is how to design effective and fine-grained course concepts such that students with different backgrounds can grasp the essence of the course. In this paper, we conduct a systematic investigation of the problem of course concept extraction for MOOCs. We propose ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Remote Sensing
سال: 2020
ISSN: 2072-4292
DOI: 10.3390/rs12111738